Articles

Contribution from the Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Electrochemical Studies of Sulfur-Nitrogen Compounds. 2. The S₄N⁻ and S₃N⁻ Ions, S_7NH , 1,4- $S_6(NH)_2$, $S_4N_4H_4$, and 1,3- S_4N_2

T. CHIVERS* and M. HOJO

Received November 22, 1983

The electrochemical reduction of the S_4N^- and S_3N^- ions, S_7NH , 1,4- $S_6(NH)_2$, $S_4N_4H_4$, and 1,3- S_4N_2 on mercury and platinum electrodes in acetonitrile containing 0.1 M $M^+ClO_4^-$ ($M^+ = Li^+$, Na^+ , or R_4N^+ where $R = Me$, Et, or *n*-Bu) has been investigated, and the identity of the products was determined by polarography and UV-visible spectroscopy. The reduction of the S_4N^- ion $(\lambda_{max} 580 \text{ nm})$ on a mercury-pool electrode in acetonitrile-0.1 M Et₄N⁺ClO₄- at -1.8 V (vs. Ag/0.1 M AgClO₄-MeCN) produced S₃N⁻ (λ_{max} 465 nm) and consumed more than 1 e/mol. Further reduction of the S_3N^- ion at -2.2 V produced a new binary sulfur-nitrogen anion $(\lambda_{\text{max}}\,375 \text{ nm})$ tentatively assigned as the S_2N^- ion. A similar sequence of reductions occurred at the platinum electrode. The electrochemical reduction of S,NH at -1.45 **V** on a mercury pool resulted in the uptake of 1 e and the formation of S_4N^7 , S_3N^7 , and HgS, while at a platinum electrode at -1.75 V the products were the 375-nm species and S_3^- , in addition to S_4N^- and S_3N^- , and the *n* value was 4. The behavior of $1,4-S_6(NH)_2$ on electrochemical reduction was similar to that of S_7NH except that no S_3 ⁻ was formed and the ratio $S_3N: S_4N$ ⁻ was greater for 1,4-S₆(NH)₂. The exhaustive electrolysis of $S_4N_4H_4$ at -2.8 V in acetonitrile-0.05 M Me₄NClO₄ gave an *n* value of ca. 8 and produced the SN_2^2 ion. The reduction of 1,3-S₄N₂ at -1.2 V on a mercury pool produced only S_3N_3 - and HgS and an *n* value of ca. 0.7, while electrolysis at a platinum electrode at -1.4 V gave both S_4N_3 and $S_3N_3^-$ and an *n* value slightly greater than unity.

In a previous paper in this series, we described the electrochemical reduction of the electron-rich heterocycle S_3N_3 ⁻ and the cage species S_4N_4 and S_4N_5 in acetonitrile.¹ These studies provided direct evidence for the predicted electronaccepting capability of S-N heterocycles arising from the availability of relatively low-energy $LUMOs.^{2,3}$ Thus, the polarographic reduction of **S4N4** proceeds via the radical anion $S_4N_4^-$ to give $S_3N_3^-$, which, in turn, takes up two electrons at -2.45 V (vs. Ag/0.1 M AgClO₄-MeCN) and yields the unstable $S_3N_3^3$ - ion. Exhaustive electrolysis of S_4N_4 at -2.8 **V** gives a coulometric *n* value of 8 and produces the SN_2^2 ion.⁴

Preliminary results for the voltammetric reduction of the saturated sulfur-nitrogen heterocycle S_7NH and the unsaturated six-membered ring $1,3-S_4N_2^5$ have been reported recently by Tweh and Turner,⁶ but the electrochemical reduction products were not conclusively identified. Reduction of S_7NH in acetonitrile at a platinum electrode was observed to produce a blue species proposed to be S_4N^- and/or $S_3^{--.7.8}$ The

- (2) Tanaka, K.; Yamabe, T.; Tachibana, A.; Kato, H.; Fukui, K. *J. Phys. Chem.* **1978,82,** 2121.
- (3) Chivers, T. *Acc. Chem. Res.* 1984, 17, 166.

Introduction electrochemical reduction of 1,3-S₄N₂ at -20 °C was reported to occur via two successive one-electron steps to give the ions $S_4N_2^-$ and $S_4N_2^2$, which were not characterized. In view of our interest in sulfur-nitrogen anions,⁹ we have investigated the electrochemical reduction of S_7NH , 1,4- $S_6(NH)_2$, and $1,3-S₄N₂$ at mercury and platinum electrodes in acetonitrile using a variety of supporting electrolytes $M^+ClO_4^-$ (M = Li, Na, or R_4N where $R = Me$, Et, or *n*-Bu). For comparison with the other cyclic sulfur imides we included $S_4N_4H_4$ in this study, and the binary anions S_4N^{-7a} and S_3N^{-10} were investigated in view of their importance in equilibria involving anions derived from the deprotonation of sulfur imides.^{9,11} Indeed, the results for these two anions will be presented first since they provide the foundation for understanding the behavior of S_7NH , 1,4- $S_6(NH)_2$, and 1,3- S_4N_2 on electrochemical reduction.

Experimental Section

The compounds $PPN^+S_4N^-$ ($PPN = Ph_3PNPPh_3$),^{7a} $PPN^+S_3N^{-10}$ S_7NH ,^{11,12} 1,4-S₆(NH)₂,¹¹ S₄N₄H₄,¹³ and 1,3-S₄N₂¹⁴ were prepared by the literature methods. The procedures used for the purification and drying of acetonitrile¹⁵ and for the preparation and purification of supporting electrolytes¹⁶ have been described elsewhere.

Details of the equipment and procedures used for electrochemical and spectrophotometric measurements have been described previously. All coulometric reductions were repeated, at least in duplicate, until consistent *n* values were obtained. All potentials are quoted with

- **1982,** 104, 4837.
- Bojes, J.; Chivers, T. J. *Chem.* Soc., *Dalton Trans.* **1975,** 1715. (11)
- (12) Bojes, J.; Chivers, T.; Drummond, I. *Inorg. Synth.* **1978,** 18, 203.
- Brauer, G. "Handbook of Preparative Inorganic Chemistry", 2nd ed.;
- Academic Press: New York, 1963; **Vol.** 1, p 411. Chivers, T.; Codding, P. W.; Laidlaw, W. G.; Liblong, *S.* W.; Oakley, R. T.; Trsic, M. *J. Am. Chem.* **Soc. 1983,** *105,* 1186.
- Fuminaga, T.; **Okazaki,** *S.;* Hojo, M. J. *Electroonab Chem. Interfacial Electrochem.* **1980,** 44, 89.
- Fujinaga, T.; Okazaki, *S.;* Hojo, M. Bull. *Imt. Chem. Res., Kyoto Unic;.* (16) **1978,** 56, 139.

⁽¹⁾ Chivers, T.; Hojo, M. *Inorg. Chem.* **1984**, 23, 1526. (2) Tanaka, K.; Yamabe, T.; Tachibana, A.; Kato, H.; F.

⁽⁴⁾ Herberhold, M.; Ehrenreich, W. *Angew. Chem., Znt. Ed. Engl.* **1982,** 21, 633.

⁽⁵⁾ In this context, saturated refers to S-N heterocycles containing threecoordinate nitrogen and unsaturated applies to S-N ring systems in which nitrogen is two-coordinate: Heal, H. G. 'The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen, and Phosphorus"; Academic Press: London, **1980.**

Tweh, J. W.; Turner, A. G. *Inorg. Chim. Acta* **1981**, 47, 121. Although both S_4N^- and S_3^- are blue, it should be possible to distinguish these ions by their visible spectra. In acetonitrile the S_4N^- ion shows
a smooth visible absorption band at 582 nm,^{7a} while the band for S_3^- -
occurs at 613 nm and exhibits fine structure.^{7b} (a) Chivers, T.; Laid W. G.; Oakley, R. T.; Trsic, M. *J. Am. Chem. SOC.* **1980,** 102, 5773.

⁽b) Fujinaga, T.; Kuwamoto, T.; Okazaki, S.; Hojo, M. Bull. Chem.
Soc. Jpn. 1980, 53, 2851.
(8) The formation of S₃N- in the presence of S₄N⁻ can also be detected by Raman spectroscopy: Chivers, T.; Lau, C. *Inorg.*

⁽⁹⁾ Chivers, T.; Oakley, R. T.; *Top. Curr. Chem.* **1982,** 102, 117. **(IO)** Bojes, J.; Chivers, T.; Laidlaw, W. G.; Trsic, M. *J. Am. Chem. Sor.*

Table I. Polarographic Data for $S_A N^{\dagger}$, $S_A N^{\dagger}$, $S_A NH$, and $1,4-S_A(NH)$,

	cathodic				
anodic $E_{1/2}^b$ (i ^c)	$E_{1/2}$ (i)	$E_{1/2}$ (i)	slope ^{d}	$E_{1/2}$ (<i>i</i>)	slope
$-0.83(0.7)$		$-1.30(5.9)$			
$-0.74(0.8)$		e			
$-0.71(1.3)$		$-1.70(7.7)$	\mathcal{L}	$-2.17(1.3)$	58
$-0.64(1.7)$		$-1.575(3.1)$	63	$-2.03(3.5)$	144
$-0.64(1.5)$		$-1.565(2.3)$	58	$-2.46(3.3)^g$	
				$-1.84(3.1)^h$	177
				$-2.07(2.4)$	59
				$-2.09(1.0)$	53
	$-1.32(10.4)$				
	$-1.24(3.3)$	$-1.48(5.0)$		-1.64 $(5.2)^{i}$	
	$-1.19(2.0)$	$-1.64(10.1)$		$-2.23(2.5)$	
	$-1.25(1.8)$	$-1.59(5.7)$		$-2.09(1.5)$	
	$-1.32(1.9)$	$-1.59(4.1)$		$-2.11(1.4)$	
	$-1.32(2.9)$	$-1.70(8.6)$		$-2.21(3.8)$	
	$-1.32(2.8)$	$-1.61(2.1)$		$-2.08(1.8)$	
	$-1.32(2.3)$	$-1.54(1.1)$		$-2.04(1,8)$	
			$[S_4N^-] = 0.40$ mM $[S_{3}N^{-}] = 0.28$ mM $[S, NH] = 0.39$ mM $[1,4-S6(NH)2] = 0.38$ mM		$-1.89(2.1)$

 $\ln \mu$ A. observed at -1.24 V (2.0 μ A), -1.47 V (2.3 μ A), and -1.62 V (3.8 μ A). to the reduction wave of PPN⁺. ^h Additional small wave at -2.20 V (0.9 μ A) 53 mV. wave a Concentration is 0.1 M perchlorate except for Me₄N⁺ (0.05 M). ^b In V. ^c In µA. ^d E vs. log $[(i_d - i)/i]$, in mV. ^e Three waves were
served at -1.24 V (2.0 µA), -1.47 V (2.3 µA), and -1.62 V (3.8 µA). ^f Not ev Sharp maximum. *J* Maximum at intermediate of the

Figure 1. Voltammograms of S_4N^- and S_3N^- in acetonitrile at 23 °C on the DME unless otherwise indicated: (1) 0.40 mM PPN⁺S₄N⁻ (0.1 M Bu₄NClO₄); (2) 1 mM Ph₃P addition to 1; (3) 0.40 mM $PPN+S_4N^{-}$ (0.1 M Et_4NClO_4); (4) on RPE for 3; (5) 0.28 mM $PPN+S_3N^{-} (0.1 M Et_4NClO_4); (6) 1 mM Ph_3P addition to 5; (7) on$ RPE for 6. Waves after -2.5 V are due to the reduction of the PPN⁺ cation.

reference to a $Ag/0.1$ M $AgClO₄$ -MeCN electrode.

Results and Discussion

Electrochemical Reduction of the S4N- *Anion.* Polarographic data for 0.40 mM PPN⁺S₄N⁻ in acetonitrile at 23 °C containing various supporting electrolytes are given in Table I, and voltammograms for $PPN+S₄N⁻$ in the presence of 0.1 M $n-Bu_4NCIO_4$, and 0.1 M Et₄NClO₄ electrodes are shown in Figure 1. **In** the latter case two cathodic waves were observed at -1.58 and -2.03 V for the dropping-mercury electrode (DME). The $E_{1/2}$ value for the first wave shifted positively when $[S_4N^-] \le 0.2$ mM. The height of the second wave was slightly greater than that of the first, and the heights of both waves showed a linear relationship with $[S_4N^-]$. The first wave was shown to be diffusion controlled by the linear relationship of i_1 with $h^{1/2}$, but the second wave was neither reversible nor diffusion controlled. With 0.1 M n -Bu₄NClO₄ the first wave

Figure 2. Absorption spectra after electrolysis of S_4N^- , S_7NH , and 1,4-S₆(NH)₂ in acetonitrile-0.1 M Et₄NClO₄: (1) $[1,4-S_6(NH)_2]$ = 0.13 mM, Pt gauze at -1.8 V, *n* = 2.9; (2) [PPN⁺S₄N⁻] = 0.11 mM, Pt gauze at -2.0 **V,** *n* = 1.5; (3) [S7NH] = 0.073 mM, Pt gauze at -1.75 V, $n = 4.0$; (4) [PPN⁺S₄N⁻] = 0.14 mM, Hg pool at -2.2 $V, n = 3.0.$

for $PPN+S₄N⁻$ also occurred at -1.57 V, but the second wave was shifted to more negative potentials, -2.46 V, so that it overlapped the reduction wave for the PPN⁺ cation. With 0.05 M Me₄NClO₄, the height of the first wave at -1.70 V was considerably enhanced and it was accompanied by a polarographic maximum. A complicated sequence of polarographic waves, suggesting decomposition, was observed with LiClO₄, or NaClO₄ as supporting electrolytes.

On the rotating platinum electrode (RPE), $PPN^+S_4N^-$ gave a single wave at ca. -1.8 V with $Et₄NCIO₄$ or n-Bu₄NClO₄ and at -1.74 V with Me₄NClO₄. In the latter case the wave height decreased at more negative potentials. Smaller waves were observed for $LiClO₄$ and $NaClO₄$, possibly due to deposition of decomposition products on the electrode surface.

Controlled-potential coulometry of 0.11 mM PPN⁺S₄N⁻ in acetonitrile-0.1 M $Et₄NCIO₄$ was performed on a platinumgauze electrode at -2.0 V. After the uptake of 1 e, the blue solution had become green. At $n = 1.5$, the UV-visible spectrum of the yellow electrolyzed solution (see Figure 2) showed a strong absorption band at 465 nm (Cf. lit.¹⁰ λ_{max} 465

nm for S_3N^-) together with a medium intensity band at 375 nm and a weak band at 580 nm (S_4N^-) .^{7a} When the electrolysis of S_4N^- was carried out at -2.3 V (the potential at which S_3N^- is reduced on a Pt electrode; vide infra), the only absorption band in the UV-visible spectrum of the electrolyzed solution was at 375 nm and the coulometric *n* value was 3.

The electrolysis of 0.08 mM PPN⁺S₄N⁻ on a mercury pool at -1.8 V gave *n* values of 1.3-1.5, and the UV-visible spectrum showed bands at 465 (S_3N^-) and 375 nm. If the electrolysis was stopped after the uptake of 0.6 e, the absorption spectrum of the blue-black solution exhibited bands at 580 (absorbance 0.16, S_4N^-) and 465 nm (absorbance 0.48). However, this solution became yellow on standing for 30 min, and the 580-nm band in the visible spectrum was replaced by a band at 375 nm. This observation suggested that either mercury or (poly)sulfide anions, S_x^2 , formed by the electrochemical reduction of S_4N^- can react with S_4N^- (or S_3N^-) to produce the 375-nm species. Thus the electrochemical reduction of *SIN-* involves the scission of an **s-S** bond to give S_3N^- (eq 1).

$$
S_{2} \times S_{2} \times S_{3} \xrightarrow{S_{2}} S_{3} + S_{2}^{2}
$$
 (1)

The true *n* value for this process is difficult to obtain due to the slow reaction of the other reduction product, S_x^2 , with S_4N^- .

When the electrolysis of PPN⁺S₄N⁻ was carried out at -2.2 V on a mercury pool, the coulometric *n* value was 3. During the course of the electrolysis the color of the solution changed from blue $(n = 0)$ through pale green $(n = 1)$ and yellow $(n \text{ } n \text{ } n)$ $= 1.5$) to colorless ($n = 3$), and the UV-visible spectrum of the final solution exhibited a single peak at 375 nm.

Electrochemical Reduction of the S_3N^- **Anion.** A solution of PPN⁺S₃N⁻ (0.28 mM) in acetonitrile-0.1 M Et₄NClO₄ exhibited a greenish yellow color and gave two cathodic waves prior to the reduction of the PPN⁺ cation on the DME (see Figure 1). The smaller first wave $(E_{1/2} = -1.63 \text{ V}, 0.3 \mu \text{A})$ was due to the presence of a small amount of the S_4N^- ion, which is formed spontaneously from S_3N^- in solution.¹⁰ The second wave $(E_{1/2} = -2.065 \text{ V}, 2.55 \mu \text{A}, \text{slope } 65 \text{ mV})$ is due to the reduction of the S_3N^- ion. The addition of Ph_3P (1 mM in acetonitrile) to the solution converted all the S_4N^- to $S_3N^$ as determined by the polarogram and the visible spectrum of the resulting yellow solution. The remaining polarographic wave $(E_{1/2} = -2.07 \text{ V}, 2.4 \mu\text{A}, \text{ slope } 58 \text{ mV})$ was found to be diffusion controlled by the linear relationship of i_1 with $h^{1/2}$.¹⁷ Controlled-potential electrolysis of PPN+S₃N⁻ (prepared from S_4N^- and Ph_3P) on a mercury-pool electrode at -2.2 V gave *n* values of 1.4-1.8, and the UV-visible spectrum of the electrolyzed solution showed a single band at 375 nm.

By analogy with S_4N^- (vide supra) we propose that the electrochemical reduction of S_3N^- also results in the scission of an **S-S** bond to give the 375-nm species (eq 2), which is

$$
S \sim \frac{S}{N} \sim S \frac{ne^{-}}{1 - e^{-}} S \sim \frac{1}{N} S + S_{x}^{2-} \tag{2}
$$

tentatively attributed to the S_2N^- ion.^{18,19}

Figure 3. Voltammograms of S_7NH , 1,4- $S_6(NH)_2$, and $S_4(NH)_4$ in acetonitrile at 23 °C on the DME and with 0.1 M Et_4NClO_4 unless otherwise indicated: (1) **0.40 mM S7NH (0.1** M LiC104); **(2) 0.40 mM S7NH; (3)** on **WE** for **2; (4) 0.35** mM **1,4-S6(NH),; (5)** on RPE for 4; (6) 0.37 mM S₄(NH)₄.

The assignment of the 375-nm species as a new binary sulfur-nitrogen anion, probably S_2N^- , is supported by the observation that addition of a solution of $c-S_8$ in acetonitrile to a solution of the 375-nm species generates S_4N^{-} (λ_{max} 580) nm) immediately. Only a very small amount of $S_3N^{-}(\lambda_{max})$ 465 nm) is formed, but the S_3N^- ion also reacts rapidly with $c-S_8$ to produce S_4N^- .

We have previously proposed the S_2N^- ion as an intermediate in the formation of S_4N^- by thermolysis of a solution of the $S_3N_3^-$ ion in acetonitrile at reflux (eq 3).^{7a}
 $S_3N_3^- \rightarrow S_2N^- +$ "NSN" (3)

$$
S_3N_3^- \to S_2N^- + \text{``NSN''} \tag{3}
$$

The sulfur produced by the disproportionation of NSN would be in a much more reactive state than $c-S_8$ and might be expected to react instantaneously with the S_2N^- ion in boiling acetonitrile (eq 4). This accounts for the lack of
 $S_2N^- + 2S^0 \rightarrow S_4N^-$ (4)

$$
S_2N^- + 2S^0 \rightarrow S_4N^-
$$
 (4)

evidence for an intermediate species in the UV-visible spectrum of solutions of $S_3N_3^-$ during thermolysis. A well-defined isosbestic point is observed for the absorption bands at 365 $(S_3N_3^-)$ and 582 nm (S_4N^-) . We have been unable to prepare S_2N^- by the reaction of S_3N^- with triphenylphosphine.¹⁰ However, the electrochemical results suggest that it should be possible to prepare S_2N^- by treatment of S_3N^- (or S_4N^-) with a suitable reducing agent. Such experiments are in progress.

On the RPE, S_3N^- gave a single cathodic wave at -2.10 V (slope 79 mV) with 0.1 M Et₄NClO₄ as supporting electrolyte. Irreversible and poorly behaved waves were observed at -2.04 and -2.4 V for Me₄NClO₄ and *n*-Bu₄NClO₄, respectively.

Electrochemical Reduction of S₇NH and $1,4\text{-S}_6(NH)_{2}$ **.** Polarographic data for S_7NH and 1,4- $S_6(NH)_2$ in acetonitrile containing various supporting electrolytes are given in Table I, and some typical voltammograms are illustrated in Figure 3. Heptasulfur imide, S_7NH , gave three cathodic waves on the DME in the presence of 0.1 M Et_4NClO_4 . The $E_{1/2}$ values of the second and third waves are very close to those observed for S_4N^- , suggesting that this ion is produced at the first

⁽¹⁷⁾ The compounds Ph₃P and Ph₃PS did not interfere with the observation of the polarographic waves of PPN⁺S₃N⁻ since these compounds are **reduced at more negative potentials than the PPN' cation: Dessy, R. E.; Chivers, T.; Kitching, W.** *J. Am. Chem.* **SOC. 1966,** *88,* **467.**

⁽¹⁸⁾ The cleavage of a S-S bond in the electrochemical reduction of S₃N⁻ and S₄N⁻ can be understood from a consideration of the LUMOs for these anions. In both cases, the LUMOs are strongly antibonding with respect to S-S linkages.^{7a,10}

⁽¹⁹⁾ Ab initio MO calculations, using the Hartree-Fock-Slater SCF procedure, for various geometries of the S_2N^- ion show the bent symmetrical form of SNS⁻ (C_2) to be more stable than an unsymmetrical arrangement SSN⁻ (C_3) by ca. 50 kcal mol⁻¹. The calculated values for **the lowest energy transitions of SNS'** *(C,)* **are 410 and 393 nm for SNS** = **110 and 120°, respectively: Laidlaw, W. G.; Trsic, M., personal communication.**

Figure 4. Variation of visible absorption bands as a function of electron uptake in the electrolysis of S_7NH (7.1 \times 10⁻⁵M) with 0.1 M Et₄NClO₄ (Pt gauze at -1.75 V): (O) 580-590 nm $(S_4N^+ + S_3^-)$; **(A) 465** nm (S,N-); (0) 370 nm *(SIN-);* **(W)** 375 **nm.**

polarographic wave. Controlled-potential electrolysis of a solution of S_7NH on a mercury-pool electrode at -1.45 V gave an *n* value of 1.0 and produced S_4N^{-} (λ_{max} 580 nm), S_3N^{-} (λ_{max}) 465 nm), and a precipitate of HgS. The pH of the electrolyzed solution, after addition of distilled water, was not significantly different from that of water itself.

Since S_4N^- is not reduced at -1.45 V, the S_3N^- ion probably results either from direct reaction of S_4N^- with mercury or 6) *.20*

from decomposition of the initially formed S₇N⁻ ion (eq 5 and
\n6).²⁰
\nS₇NH + e⁻
$$
\longrightarrow
$$
 $\frac{1}{2}H_2 + S_7N$
\n \longrightarrow $S_4N^{-} + \frac{3}{2}S_8$ (5)
\nThe sulfur so formed will react with mercury to form HgS

or, on a platinum electrode, will be reduced to polysulfide ions (vide infra).

At the RPE, 0.4 mM S₇NH in acetonitrile–0.1 M Et₄NClO₄ showed two irreversible cathodic waves at -1.39 (62.5 μ A, 163) mV) and -2.12 V (42.5 μ A, 100 mV). Coulometric reduction of S_7NH (0.07 mM) at -1.75 V on a platinum gauze electrode gave an *n* value of 4. During the electrolysis, the initially colorless solution first became blue, then green, and finally yellow at $n = 4$. The absorption spectra of the electrolyzed solution, measured as a function of electron uptake, are displayed in Figure 4. The product at $n = 4$ was mainly $S_3N^ (\lambda_{\text{max}}$ 465 nm) accompanied by a small amount of the 375-nm species, which does not appear in the UV-visible spectrum until after the uptake of 2 e. The band at 370 nm, observed prior to the $n = 2$ stage, is associated with S_4N^- . At $n > 2$, the major S_4N^- band at 580 nm was shifted to a longer wavelength due to the formation of S_3^- (613 nm). Elemental sulfur formed by the electrolysis of S_7NH at a platinum electrode will be reduced to polysulfide ions, and hence S_3^- , at this potential.^{7b} In this connection it should be mentioned that two maxima, at $n = 0.7$ and $n = 2$, were observed in the current-time curve during the controlled potential electrolysis of S_7NH at -1.75 V on a platinum electrode. In the electrochemical reduction of **c-Ss,** a similar maximum was observed at an *n* value of ca. **2.5.7b**

The hexasulfur dimide, $1,4-S_6(NH)_2$, gave three polarographic waves in the presence of R_4N^+ cations (see Table I). The $E_{1/2}$ values of the second and third waves were very similar to those of S_7NH . Coulometric reduction on a mercury pool at -1.5 V (the first wave) gave an *n* value of 1.3, and a precipitate of HgS was formed. The UV-visible spectrum of the electrolyzed solution showed that the major product was $S_3N^ (\lambda_{\text{max}} 465 \text{ nm})$, accompanied by smaller amounts of $S_4N^{-}(\lambda_{\text{max}})$ 580 nm). On the RPE, $1,4-S₆(NH)$, showed two irreversible cathodic waves at -1.57 and -2.18 V. Controlled-potential electrolysis of 0.13 mM 1,4- $S_6(NH)_2$ at -1.8 V on a platinum-gauze electrode gave an *n* value of 3. The UV-visible spectrum of the electrolyzed solution showed bands at 465 $(S₃N⁻,$ absorbance 0.97), 580 $(S₄N⁻,$ absorbance 0.11), and 375 nm (absorbance 0.38). The changes in the absorption spectrum as a function of *n* during the electrolysis were qualitatively similar to those observed for S_7NH (see Figure 4) with the exception that no S_3 ⁻ was formed from 1,4-S₆-(NH),. Consistent with this observation, no maximum due to the formation of $c-S_8$ was observed in the current-time curve, which did not exhibit a smooth logarithmic decay. Finally, the amount of S_3N^- formed from 1,4- $S_6(NH)_2$ was ca. 1.7 times larger than that formed from S_7NH .

These results can be explained by a combination of the reduction processes shown in eq $7-10$, the relative importance

reduction processes shown in eq
$$
1 - 10
$$
, the relative importance
of which is unknown.
 $S_6(NH)_2 + e^- \longrightarrow {}^1{}_2H_2 + S_6N_2H^-$
 $S_3N^- + {}^{\text{cs}}{}_3NH^{\text{p}} (8)$
 $S_6(NH)_2 + 2e^- \longrightarrow H_2 + S_6N_2{}^{2-}$
 $S_3N^- + {}^{\text{cs}}{}_3NH^{\text{p}} (8)$
 $S_4N^- + S_3NH^{\text{p}} (8)$
 $S_3N^- + {}^{\text{cs}}{}_3NH^{\text{p}} (9)$

In order to generate the $S_6N_2H^-$ and $S_6N_2^{2-}$ ions, a 10⁻⁴ M solution of $1,4-S_6(NH)_2$ in acetonitrile was treated with *n*-Bu4NOH in methanol and the UV-visible spectra of the resulting solutions were measured after the addition of 1, **2,** 3, 4, and *5* molar equiv of base. The changes in the absorption spectrum as a function of added base were very similar to the changes observed for electrolyzed solutions of $1,4-S₆(NH)$ as a function of electron uptake (vide supra). The 585-nm band (S_4N^-) rapidly reached a maximum at $[OH^-]: [1,4-S_6-]$ $(NH)_2$ = 2, while the 465-nm band (S₃N⁻) grew steadily and reached a plateau when this ratio was ca. 3; at this point the 375-nm band first appeared. The intensity of the latter band increased steadily (and the 585-nm band decreased) as more base was added. The absorption spectra of the final solution revealed that S_3N^- (465 nm) is converted to the 375-nm species on standing in the presence of OH-.

Electrochemical Reduction of *S4N4H4.* **A** preliminary investigation of the electrochemical reduction of $S_4N_4H_4$ revealed vestigation of the electrochemical reduction of $\dot{S}_4N_4H_4$ revealed a polarographic maximum at $E_{1/2} \sim -2.8 \text{ V.}^{21}$ In this study, the supporting electrolyte was shown to have a significant effect on the polarographic reduction potential for $S_4N_4H_4$. $E_{1/2}$ values of -2.6, -2.8, and -3.2 V were found for M_{e_4} NClO₄, Et₄NClO₄, and *n*-Bu₄NClO₄, respectively. These values are approximate because of polarographic maxima $(Me_4N^+$ and Et_4N^+) and closeness to the limit of the polarographic window $(n-Bu₄N⁺)$. Controlled-potential electrolysis at -2.8 or -3.0 V in the presence of 0.05 M Me₄NClO₄ and 0.1 M Et₄NClO₄, respectively, gave an *n* value of ca. 8, and the UV-visible spectrum of the electrolyzed solution showed an absorption maximum at 254 nm (cf. S_4N_4).^{4,22} These results suggest the overall reduction process eq 11 (cf.
 $S_4N_4H_4 + 8e^- \rightarrow 2SN_2^{2-} + 2S^{2-} + 2H_2$ (11)

$$
S_4N_4H_4 + 8e^- \rightarrow 2SN_2^{2-} + 2S^{2-} + 2H_2 \tag{11}
$$

 S_4N_4).¹ When the electrolysis was stopped at the $n = 1$ stage, the pale purple solution exhibited a strong visible absorption band at 390 nm and a weaker band at 510 nm. The identity of the species responsible for these bands is unknown,²³ but

⁽²⁰⁾ We have previously established the formation of S_4N^- via the unstable **S,N-** ion in solutions of **S,NH** in basic solvents, e.g. DMF or HMPA: Chivers, T.; Drummond, I. *Inorg.* Chem. **1974,** *13,* 1222.

⁽²¹⁾ **Hojo, M.** *Bull. Chem. SOC. Jpn.* **1980, 53,** 2856.

In acetonitrile, K_2SN_2 exhibits a smooth absorption band at 253 nm: Herberhold, M., personal communication.

Table II. Polarographic Data for 1,3-S₄N₂ $(1,3-S,N₂] = 0.27$ mM)

$1 - 2 - 1$								
support- ing electro- 1 vte a	$E_{1/2}^{\,b}(i^c)$	$E_{1/2}$ (i)	$E_{1/2}$ (<i>i</i>)	$E_{1/2}$ (i)				
$Li+$	d							
$Na+$	e							
$Me_{a}N^{+}$	$-0.90(2.1)$	-1.60 $(1.9)^f$	$-2.20(1.0)$	$-2.425(1.1)$				
Et, N^*	$-0.90(2.1)$	$-1.60(1.7)$	$-2.20(1.7)$	$-2.61(0.9)$				
Bu.N+	$-0.89(1.8)$	$-1.56(1.0)$	$-2.11(0.8)$	no wave				

^a Concentration is 0.1 M perchlorate except for $Me₄N⁺$ (0.05 M). In V. \degree In μ A. \degree Ill-defined waves at -0.97 V (4.3 μ A), -1.33 V (4.5 μ A), and -1.95 V (1.6 μ A). e Four waves at -0.98 V (1.9) μ A), -1.28 V (1.7 μ A), -1.46 V (1.6 μ A), and -1.61 V (2.0 μ A). Accompanied by a polarographic maximum.

Figure 5. Voltammograms of $1,3-S_4N_2$ in acetonitrile with various supporting electrolytes (0.1 M) at 23 °C: (1) Li⁺; (2) Na⁺; (3) Et₄N⁺ on **RPE**; (4) 0.05 M Me₄N⁺; (5) Et_4N^+ ; (6) Bu_4N^+ . $[1,3-S_4N_2] =$ 0.31 mM for waves 1-3 and 0.27 mM for waves **4-6** (all except wave 3 on the DME).

it is pertinent to note that the UV-visible spectrum exhibited a band at 580 nm (S₄N⁻) after 30 min at 23 °C in the presence of air. Broad maxima were observed in the current-time curves from the coulometric experiments.

Electrochemical Reduction of $1,3-S_4N_2$ **.** The $1,3-S_4N_2$ molecule has recently been shown to consist of a six-membered ring in a half-chair conformation.²⁴ In acetonitrile-0.1 M Et4NC104, four cathodic waves were observed on the DME (see Table I1 and Figure *5).* The height of the first wave varied linearly with concentration for $[S_4N_2] = 0.15-0.6$ mM. The second wave was accompanied by a polarographic maximum. The $E_{1/2}$ values for the second and third waves are close to the values observed for S_4N^- (see Table I), and the $E_{1/2}$ values for the fourth wave correspond with those reported for the S_3N_3 ⁻ ion.¹

Controlled-potential coulometry of 0.11 mM S_4N_2 in acetonitrile-0.1 M Et_4NClO_4 at -1.2 V (the first wave) on a mercury-pool electrode gave an *n* value of ca. **0.7.** The UVvisible spectrum of the electrolyzed solution showed a band at 360 nm and a cathodic wave at -2.61 V in polarography due to S_3N_3 . No S_4N ⁻ was detected, and the yield of S_3N_3 ⁻ was estimated to be ca. 70% on the basis of the known extinction coefficient^{21,25} and polarographic current.¹ Some precipitation of HgS was observed during the electrolysis. The overall reaction shown in *eq* 12 for the coulometric reduction

of S₄N₂ on a mercury electrode is indicated by these results.
S₄N₂ +
$$
2/{}_{3}e^{-}
$$
 + 2Hg \rightarrow $2/{}_{3}S_{3}N_{3}^{-}$ + 2HgS (12)

On the RPE, in the presence of 0.1 M $Et₄NCIO₄, S₄N₂$ gave two cathodic waves at -1.14 and -1.59 V (see Figure *5).* The slope of the first wave was 121 mV and the second wave was ill-defined. Coulometry on a platinum-gauze electrode at -1.4 V gave an *n* value of 1.1-1.2. The polarogram of the solution after electrolysis showed reduction waves at -1.64 and -2.04 **V** (S_4N^-) and at -2.62 **V** $(S_3N_3^-)$. The presence of these two ions was confirmed by the observation of UV-visible absorption bands at 580 (S_4N^-) and 360 nm ($S_3N_3^-$). The overall scheme shown in *eq* 13 is suggested to account for the electrochemical reduction of \hat{S}_4N_2 on a platinum electrode.
 $9S_4N_2 + 10e^- \rightarrow 6S_4N^- + 4S_3N_3$

$$
9S_4N_2 + 10e^- \rightarrow 6S_4N^- + 4S_3N_3 \tag{13}
$$

In fact, the amounts of S_4N^- and $S_3N_3^-$ formed (calculated from their known extinction coefficients)^{20,21,25} corresponded to stoichiometric coefficients of *5* for both ions in eq 13. The additional $S_3N_3^-$ may be formed by the electrochemical reduction of S_4N_4 ¹ present as a minor impurity in the sample of $1,3-S₄N₂$ used for electrolysis.

It is clear from these results that the initial reduction product of 1,3-S₄N₂, presumably the radical anion 1,3-S₄N₂⁻, is unstable with respect to disproportionation to other binary sulfur-nitrogen anions. It is not known whether this decomposition involves an intramolecular bond rupture, as was found for $S_4N_4 \rightarrow S_3N_3^{-1,26}$ or a bimolecular reaction. However, the prospects for preparing a stable salt of the dianion 1,3- $S_4N_2^{2-}$, which has been the subject of recent CNDO/2 MO calculations, 27 are not encouraging.

Conclusion

The major product of the electrochemical reduction of S_7NH at mercury or platinum electrodes is the S_4N^- ion. Smaller amounts of the S_3N^- ion are also formed, and the latter is the predominant product from the reduction of 1,4- $S_6(NH)_2$. The S_4N^- ion can be reduced electrochemically to the S_3N^- ion, a process that involves the cleavage of a $S-S$ bond. By analogy, the electrochemical reduction product (λ_{max}) 375 nm) of the S_3N^- ion is tentatively assigned as the $S_2N^$ ion. The electrochemical results suggest that it should be possible to prepare the 375-nm species by treatment of $S_4N^$ or S_3N^- with a suitable reducing agent.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support, Kochi University for granting a leave of absence to M.H., and Professor R. T. Oakley and Hans Koenig for generous gifts of S_4N_2 and PPN⁺S₄N⁻.

Registry No. S_4N^7 , 74273-17-9; $PPN^+S_4N^7$, 74273-18-0; S_3N^7 , 76468-83-2; PPN⁺S₃N⁻, 76468-84-3; S₇NH, 293-42-5; 1,4-S₆(NH)₂, 1003-76-5; $S_4N_4H_4$, 293-40-3; 1,3- S_4N_2 , 79796-31-9; S_2N , 91054-03-4; HgS, 1344-48-5; S_3^- , 12597-04-5; $SN_2^2^-$, 79796-15-9; $S_3N_3^-$, 2537-36-2; Et4NC104,2567-83-1; Bu4NC104, 1923-70-2; S, 7704-34-9; **Hg,** 7439-97-6; Pt, 7440-06-4. 65107-36-0; LiC104, 7791-03-9; NaC104, 7601-89-0; Me4NC104,

⁽²³⁾ **By** analogy with the electrochemical reduction of S7NH and 1,4-S6- $(NH)_2$ it is, of course, conceivable that these bands are due to the (23) By analogy with the electrochemical reduction of S₇NH and 1,4-S₆ (NH)₂ it is, of course, conceivable that these bands are due to the $S_A N_4 H_3^-$ ion and/or its decomposition product(s). $S_4 N_4 H_4 + e^- \rightarrow$
 $S_A N_4 H$

Z. V. J. *Chem. SOC., Dalton Trans.* **1981,** 2188.

⁽²⁵⁾ Bojes, J.; Chivers, T.; Laidlaw, W. G.; Trsic, M. J. *Am. Chem. SOC.* **1979,** 101,4517.

⁽²⁶⁾ Williford, J D.; VanReet, **R.** E.; Eastman, M. P.; Prater, K. B. J. *Electrochem. SOC.* **1973,** *120,* 1498.

⁽²⁷⁾ Bhattacharyya, A. A.; Bhattacharyya, A.; Adkins, R. R.; Turner, A. **G.** *J. Am. Chem. SOC.* **1981,** 103,7458.